Reference: Friedman NS, et al. (2025) Saccharomyces cerevisiae as a Model for Reprogramming of Eukaryotic Cells: Implications for the Study of the Relationship Between Metabolism and Inflammation in Chronic Disease. Cell Biochem Biophys

Reference Help

Abstract


Inflammation is a fundamental feature of many diseases. It is part of a programmed response to threats concerning an organism's integrity. Programming is modified by the environment and is made up of complex relationships between regulating mechanisms of metabolism. In this study, S. cerevisiae were used to establish a model of reprogramming, utilizing in this case a 23-h water-only fast compared to a standard high glucose environment. Crude mitochondrial preparations were made using differential centrifugation. Pyruvate Dehydrogenase Complex (PDC) activity was approximated via an assay measuring changes in ability to produce NADH. Experiments with lipopolysaccharide (LPS) involved a procedure exposing the yeast to LPS (100 ng/ml) for 90 min prior to mitochondrial isolation. Oxygen consumption rates were measured using a Clark type electrode setup. Results suggest that fasting in water can reprogram yeast mitochondria. Mechanisms modified by this process appear to regulate the ability of the mitochondria to maintain the relationship of oxygen consumption (indicative of electron transport) to RCR (indicative of membrane potential), largely separate to ATP synthesis. Although the ADP/O may be lower in the progeny of the fasted yeast, it is the fact that it maintained a higher RCR with the same or lower ADP/O, that is the important observation. Based on estimations of PDC activity, the progeny of the high glucose exposed yeast appeared less able to readily utilize pyruvate for respiration. In addition, the LPS challenge also revealed possible changes in immune response that may be resulting from glucose toxicity. In conclusion, S. cerevisiae can be reprogrammed to metabolically respond differently to a specific environment. This includes both a high glucose environment and a high glucose environment containing LPS (a pathogen associated molecular pattern), with regard to bioenergetic changes. These changes are associated in mammalian cells with the switch to a proinflammatory and proliferative metabolic state, analogous to that of M1 macrophages (decreased OxPhos and lower RCR), seen in atherosclerosis and other conditions. This data supports the use of this model for further investigation of proinflammatory processes and potential interventions to restore proper regulation of immune responses.

Reference Type
Journal Article
Authors
Friedman NS, De Britto GJ, Lehner AN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference